rBmαTX14 Increases the Life Span and Promotes the Locomotion of Caenorhabditis Elegans
نویسندگان
چکیده
The scorpion has been extensively used in various pharmacological profiles or as food supplies. The exploration of scorpion venom has been reported due to the presence of recombinant peptides. rBmαTX14 is an α-neurotoxin extracted from the venom gland of the East Asian scorpion Buthus martensii Karsch and can affect ion channel conductance. Here, we investigated the functions of rBmαTX14 using the Caenorhabditis elegans model. Using western blot analysis, rBmαTX14 was shown to be expressed both in the cytoplasm and inclusion bodies in the E.coli Rosetta (DE3) strain. Circular dichroism spectroscopy analysis demonstrated that purified rBmαTX14 retained its biological structures. Next, feeding nematodes with E.coli Rosetta (DE3) expressing rBmαTX14 caused extension of the life span and promoted the locomotion of the nematodes. In addition, we identified several genes that play various roles in the life span and locomotion of C. elegans through microarray analysis and quantitative real-time PCR. Furthermore, if the amino acid site H15 of rBmαTX14 was mutated, rBmαTX14 no longer promoted the C. elegans life span. In conclusion, the results not only demonstrated the functions and mechanism of rBmαTX14 in C. elegans, but also provided the new sight in the utility of recombinant peptides from scorpion venom.
منابع مشابه
The lin-4 Gene Controls Fat Accumulation and Longevity in Caenorhabditis elegans
Previous studies have determined that lin-4, which was the first miRNA to be discovered, controls the timing of cell fate determination and life span in Caenorhabditis elegans. However, the mechanism of lin-4 involvement in these processes remains poorly understood. Fat storage is an essential aspect of the life cycle of organisms, and the function of lin-4 in fat accumulation is not clear. In ...
متن کاملLife-Span Extension by Axenic Dietary Restriction Is Independent of the Mitochondrial Unfolded Protein Response and Mitohormesis in Caenorhabditis elegans
In Caenorhabditis elegans, a broad range of dietary restriction regimens extend life span to different degrees by separate or partially overlapping molecular pathways. One of these regimens, axenic dietary restriction, doubles the worm's life span but currently, almost nothing is known about the underlying molecular mechanism. Previous studies suggest that mitochondrial stress responses such as...
متن کاملCaenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span.
Transactive response DNA-binding protein (TARDBP/TDP-43), a heterogeneous nuclear ribonucleoprotein (hnRNP) with diverse activities, is a common denominator in several neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Orthologs of TDP-43 exist in animals ranging from mammals to invertebrates. Here, we systematically studied mutant Caenor...
متن کاملKnockdown of Indy/CeNac2 extends Caenorhabditis elegans life span by inducing AMPK/aak-2
Reducing the expression of the Indy (Acronym for 'I'm Not Dead, Yet') gene in lower organisms promotes longevity and leads to a phenotype that resembles various aspects of caloric restriction. In C. elegans, the available data on life span extension is controversial. Therefore, the aim of this study was to determine the role of the C. elegans INDY homolog CeNAC2 in life span regulation and to d...
متن کاملInfluence of Steroid Hormone Signaling on Life Span Control by Caenorhabditis elegans Insulin-Like Signaling
Sterol-sensing nuclear receptors and insulin-like growth factor signaling play evolutionarily conserved roles in the control of aging. In the nematode Caenorhabditis elegans, bile acid-like steroid hormones known as dafachronic acids (DAs) influence longevity by binding to and regulating the activity of the conserved nuclear receptor DAF-12, and the insulin receptor (InsR) ortholog DAF-2 contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016